Lineage Tracing of Cardiac Explant Derived Cells

نویسندگان

  • Lincoln T. Shenje
  • Loren J. Field
  • Catrin A. Pritchard
  • Christopher J. Guerin
  • Michael Rubart
  • Mark H. Soonpaa
  • Keng-Leong Ang
  • Manuel Galiñanes
چکیده

AIMS Cultured cardiac explants produce a heterogeneous population of cells including a distinctive population of refractile cells described here as small round cardiac explant derived cells (EDCs). The aim of this study was to explore the source, morphology and cardiogenic potential of EDCs. METHODS Transgenic MLC2v-Cre/ZEG, and actin-eGFP mice were used for lineage-tracing of EDCs in vitro and in vivo. C57B16 mice were used as cell transplant recipients of EDCs from transgenic hearts, as well as for the general characterisation of EDCs. The activation of cardiac-specific markers were analysed by: immunohistochemistry with bright field and immunofluorescent microscopy, electron microscopy, PCR and RT-PCR. Functional engraftment of transplanted cells was further investigated with calcium transient studies. RESULTS Production of EDCs was highly dependent on the retention of blood-derived cells or factors in the cultured explants. These cells shared some characteristics of cardiac myocytes in vitro and survived engraftment in the adult heart in vivo. However, EDCs failed to differentiate into functional cardiac myocytes in vivo as demonstrated by the absence of stimulation-evoked intracellular calcium transients following transplantation into the peri-infarct zone. CONCLUSIONS This study highlights that positive identification based upon one parameter alone such as morphology or immunofluorescene is not adequate to identify the source, fate and function of adult cardiac explant derived cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Potential of Menstrual Blood-Derived Stem Cells in Differentiation to Epidermal Lineage: A Preliminary Report

BACKGROUND Menstrual blood-derived stem cells (MenSCs) are a novel source of stem cells that can be easily isolated non-invasively from female volunteered donor without ethical consideration. These mesenchymal-like stem cells have high rate of proliferation and possess multi lineage differentiation potency. This study was undertaken to isolate the MenSCs and assess their potential in differenti...

متن کامل

Isolation of human explant derived cardiac stem cells from cryopreserved heart tissue

The value of preserving high quality bio specimens for fundamental research is significant as linking cellular and molecular changes to clinical and epidemiological data has fueled many recent advances in medicine. Unfortunately, storage of traditional biospecimens is limited to fixed samples or isolated genetic material. Here, we report the effect of cryopreservation of routine myocardial biop...

متن کامل

BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage.

Proepicardial cells give rise to epicardium, coronary vasculature and cardiac fibroblasts. The proepicardium is derived from the mesodermal lining of the prospective pericardial cavity that simultaneously contributes myocardium to the venous pole of the elongating primitive heart tube. Using proepicardial explant cultures, we show that proepicardial cells have the potential to differentiate int...

متن کامل

Cardiac Explant-Derived Cells Are Regulated by Notch-Modulated Mesenchymal Transition

BACKGROUND Progenitor cell therapy is emerging as a novel treatment for heart failure. However the molecular mechanisms regulating the generation of cardiac progenitor cells is not fully understood. We hypothesized that cardiac progenitor cells are generated from cardiac explant via a process similar to epithelial to mesenchymal transition (EMT). METHODS/FINDINGS Explant-derived cells were ge...

متن کامل

Paracrine Engineering of Human Cardiac Stem Cells With Insulin-Like Growth Factor 1 Enhances Myocardial Repair

BACKGROUND Insulin-like growth factor 1 (IGF-1) activates prosurvival pathways and improves postischemic cardiac function, but this key cytokine is not robustly expressed by cultured human cardiac stem cells. We explored the influence of an enhanced IGF-1 paracrine signature on explant-derived cardiac stem cell-mediated cardiac repair. METHODS AND RESULTS Receptor profiling demonstrated that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008